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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‟s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner‟s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 INTEGRAL EQUATION 

AND INTEGRAL TRANSFORM 
 

In this Block we will be exploring the concept of Integral Equation.We 

will discussed the classifications of integral equations such as Fredholm 

Integral Equation, Volterra Integral Equation and many others along with 

the kinds of particular equation. We will explore separable kernel and 

how to solve Fredholm integral equation of the second kind with 

separable kernel. Also we discussed the method of finding eigenvalue 

and Eigen function of the fredholm integral equation of the second kind 

by reducing the equation to an algebraic system of equation. As we know 

that convergence and uniqueness is an important phenomenon so 

conditions of convergence and uniqueness of series solution is also 

discussed. We will enumerate We have studied three different theorems 

of Fredholm‟s . 
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UNIT-1 INTRODUCTION TO 

INTEGRAL EQUATIONS 
 

STRUCTURE 

1.0 Objectives 

1.1 Introduction 

1.2 What is Integral Equation? 

1.3 Classification of Linear Integral Equations 

 1.3.1  Fredholm Integral Equations  

1.3.2. Volterra Integral Equations  

1.3.3. Integro-differential Equations  

1.3.4. Singular Integral Equations  

1.3.5. Volterra-Fredholm Integral Equations  

1.3.6. Volterra-Fredholm Integro-differential Equations 

1.4 Relations between differential and integral equations 

 1.4.1 Leibnitz Rule of Differentiating Under The Integral Sign 

1.4.2 Cauchy‟s Formula for Repeated Integration 

1.4.3. Converting IVP to Volterra Integral Equations 

1.5 Let us sum up 

1.6 Keywords 

1.7 Questions for Review 

1.8 Suggested Reading and References 

1.9 Answers to Check your Progress 

1.0 OBJECTIVES 
 

Understand the concept of Integral Equation 

Understand the Classification of Linear Integral Equations 
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Comprehend Relations between differential and integral equations 

1.1 INTRODUCTION 
 

The subject of Integral equations is one of the most useful mathematical 

tools in both pure and applied mathematics. It has enormous applications 

in many physical problems. Many initial and boundary value problems 

associated with ODE(ordinary differential equations) and PDE(partial 

differential equations) can be transformed into problems of solving some 

approximate integral equations.  

Integral equations were first encountered in the theory of Fourier 

Integral. In 1826, another integral equation was obtained by Abel. Actual 

development of the theory of integral equations began with the works of 

the Italian Mathematician V.Volterra (1896) and the Swedish 

Mathematician I.Fredholm (1900). 

1.2 WHAT IS INTEGRAL EQUATION? 
 

An integral equation is an equation in which the unknown function u(x) 

to be determined appears under the integral sign. A typical form of an 

integral equation in u(x) is of the form. 

 

Where u(x) is called the kernel of the integral equation  ( ) and  ( ) are 

the limit of integration.  

For example, for  a ≤ s ≤ b; a ≤ t ≤ b, the equations 

 

In (1), it is 

easily 

observed that the unknown function u(x) appears under the integral sign 

as stated above, and out of the integral sign in most other cases as will be 



Notes 

8 

discussed later. It is important to point out that the kernel K (x, t) and the 

function f(x) in (1) are given in advance. Our goal is to determine u(x) 

that will satisfy (1), and this may be achieved by using different 

techniques which will be discussed later. 

Integral equation arise naturally in Physics, Chemistry, biology and 

engineering applications modeled by initial value problems for a finite 

interval ,. They also arise as representation formulas for the solutions of 

differential equations. Indeed a differential equation can be replaced by 

an integral equation that incorporates its boundary condition. As such, 

each solution of the integral equation automatically satisfies the 

boundary conditions. Integral equations also form one of the most useful 

tools in many branches of pure analysis, such as functional analysis and 

stochastic processes. One can also consider integral equations in which 

the unknown function is dependent not only on one variable but on 

several variables. Such for example, is the equation 

 

 

Where , s, t are n - dimensional vectors and Ω is a region of an n 

−dimensional space. Similarly, one can consider systems of integral 

equations with several unknown functions. An Integral equation is called 

Linear if only linear operations are performed in it upon the unknown 

function. Equations (1.2) and (1.3) are linear, while (1.4) is nonlinear. In 

fact equations (1.2) and (1.3) can be written as 

 

 

Where L[g(s)] = ∫  (   ) ( )  
 

 
. Then for any constant c1 and c2, we 

have i.e. integral equation satisfy linear property. 

1.3 CLASSIFICATION OF LINEAR 

INTEGRAL EQUATIONS 
 

The most frequently used linear integral equations fall under two main 

classes namely Fredholm and Volterra integral equations. However, in 
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this text we will distinguish four more related types of linear integral 

equations in addition to the two main classes. In the following is the list 

of the Fredholm and Volterra integral equations, and the four more 

related types:  

 

1. Fredholm Integral Equations  

2. Volterra Integral Equations  

3. Integro-differential Equations  

4. Singular Integral Equations  

5. Volterra-Fredholm Integral Equations  

6. Volterra-Fredholm Integro-differential Equations 

1.3.1 Fredholm Linear Integral Equation  

The standard form of Fredholm linear integral equations, where the 

limits of integration a and b are constants, are given by the form 

 

Where the kernel of the integral equation K(s,t)  and the function f(s) are 

given in advance, and λ is a parameter. The equation (1.8) is called linear 

because the unknown function g(x) under the integral sign occurs 

linearly, i.e. the power of g(x) is one. The value of  ( ) will give the 

following kinds of Fredholm linear integral equation 

  

1. When  ( ) = 0, equation (1.8) becomes 

 

 

 

 

And the integral equation is called Fredholm Integral equation of First 

kind. 

 

2. When  ( )  = 1, equation (1.8) become 
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And the integral equation is called Fredholm integral equation of the 

second kind. In fact, the equation (1.10) can be obtained from (1.8) by 

dividing both sides of (1.8) by  ( ) provided that  ( )  ≠  0.  

In summary, the Fredholm Integral equation is of the first kind if the 

unknown function g(s) appears only under the integral sign. However, 

the Fredholm integral equation is of the second kind if the unknown 

function g(s) appears inside and outside the integral sign. 

 

1.3.2 Volterra Linear Integral Equation  

The standard form of Volterra linear integral equations, where the limits 

of integration are functions of s rather than constants, are of the form 

 

Where the unknown function g(s) under the integral sign occurs linearly 

as stated before. It is worth noting that (1.11) can be viewed as a special 

case of the Fredholm integral equation when the kernel K(s, t) vanishes 

for t > s , s is in the range of integration [a, b]. As in Fredholm equations, 

Volterra integral equations fall under two kinds,  

 

1. When  ( ) = 0, equation (1.11) becomes 

 

And in this case the integral equation is called Volterra integral equation 

of the First Kind. 

 

2. When  ( ) = 1, equation (1.11) becomes 
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And in this case the integral equation is called the Volterra integral 

equation of the Second Kind. In summary, the Volterra integral equation 

is of the first kind if the unknown function g(s) appears only under the 

integral sign. However, the Volterra integral equation is of the second 

kind if the unknown function g(s) appears inside and outside the integral 

sign. 

Examining the equations (1.8)-(1.13) carefully, the following remarks 

can be concluded. 

 

Remarks  

1. The structure of Fredholm and Volterra equations: The unknown 

function g(s)  appears linearly only under the integral sign in linear 

Fredholm and Volterra integral equations of the First Kind. However, the 

unknown function g(s)  appears linearly inside as well as outside the 

integral sign in second kind of both linear Fredholm and Volterra integral 

equations. 

 

2. The Limits of Integration: In Fredholm integral equations, the 

integral is taken over a finite interval with fixed limits of integration. 

However, in Volterra integral equation, at least one limit of the range of 

integration is a variable, and the upper limit is the most commonly used 

with a variable limit. 

 

3. The Linearity property: As indicated earlier, the unknown function 

g(s)   in linear Fredholm and Volterra integral equations (1.10) and (1.13) 

occurs to the first power wherever it exists. However, nonlinear 

Fredholm and Volterra integral equations arise if g(s) is replaced by a 

nonlinear function F( g(s) ) , such as   ( ) ,  ( ) and so on. The 

following are examples of nonlinear integral equations 
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4. The Homogeneity property: On setting f (s)  = 0 in Fredholm or 

Volterra integral equation of the second kind given by (1.10) and (1.13), 

the resulting equation is called a homogeneous integral equation, 

otherwise it is called nonhomogeneous integral equation. 

 

1.3.3 Integro-Differential Equations  

In this type of equations, the unknown function g(s) occurs in one side as 

an ordinary derivative, and appears on the other side under the integral 

sign. Further, we point out that an Integro-differential equation can be 

easily observed as an intermediate stage when we convert a differential 

equation to an integral equation. 

 The following are examples of Integro-differential equations: 

 

Equations (1.17), (1.18) are Volterra Integro-differential equations, and 

(1.19) is a FredholmIntegro-differential equation. This classification has 

been concluded as a result to the limit of integration. 

1.3.4 Singular Integral Equations  

The integral equation of first kind 

 

 

or the integral equation of second kind 

 

is called singular if the lower limit, the upper limit or both limits of 

integration are infinite. In addition, the equation (1.20) or (1.21) is also 
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called singular integral equation if the kernel K (s, t) becomes infinite at 

one or more points in the domain of integration. Examples of first type of 

singular integral equations are given by as 

 

 

 

 

 

 

 

 

 

Where the singular behavior in these examples has resulted from the 

range of integration becoming infinite Examples of the second type of 

singular integral equations are given by 

 

 

Where the singular behavior in this type of equations has resulted from 

the kernel K(s,t) becoming infinite as t → s. It is important to note that 

singular integral equations similar to examples (1.25) and (1.26) are 

called Abel‟s integral equation and generalized Abel‟s integral equation 

respectively. Singular integral equation similar to example (1.27) are 

called the weakly-singular second-kind Volterra type integral equations. 

 

1.3.5 Volterra-Fredholm integral equations  

The Volterra-Fredholm integral equation, which is a combination of 

disjoint Volterra and Fredholm integrals, appears in one integral 

equation. The Volterra-Fredholm integral equations arise from the 

modeling of the spatiotemporal development of an epidemic, from 

boundary value problems and from many physical and chemical 



Notes 

14 

applications. The standard form of the Volterra-Fredholm integral 

equation reads 

 

Where  K1 (s, t) and K2 (s, t)  are the kernels of the equation. Examples 

of the Volterra-Fredholm integral equations are 

 

Notice that the unknown function g(s) appears inside the Volterra and 

Fredholm integrals and outside both integrals. 

 

1.3.6 Volterra-FredholmIntegro Differential 

Equations:   

The Volterra-Fredholm Differential Equation, which is a combination of 

disjoint Volterra and Fredholm integrals and Differential operator, may 

appear in one integral equation. The Volterra-FradholmIntegro-

Differential equations arise from many physical and chemical 

applications similar to the Volterra-Fredholm equations. The standard 

form of Volterra-FradholmIntegro-Differential equation reads 

 

Where K1 (s, t) and K2 (s, t)  are the kernels of the equation, and n is the 

order of the ordinary derivative of g(s). Notice that because this kind of 

equations contains ordinary derivatives, then initial conditions should be 

prescribed depending on the order of the derivative involved. Examples 

of the Volterra-FredholmIntegro-differential equations are 
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Notice that the unknown function g(s) appears inside the Volterra and 

Fredholm integrals and outside both integrals. Finally in this section, we 

illustrate the classifications and the basic concepts that were discussed 

earlier by the following examples. 

 

Example 1.Classify the following integral equation 

 

 

asFredholm or Volterra integral equation, linear or nonlinear and 

homogeneous or nonhomogeneous. Note that the upper limit of the 

integral is  and the function  ( ) appears twice. This indicates that 

equation (1.34) is a Volterra integral equation of the second kind. The 

equation (1.34) is linear since the unknown function  ( )  appears 

linearly inside and outside the integral sign. The presence of the function 

 ( )     
 

 
   classifies the equation as a non-homogeneous equation. 

Example 2.Classify the following integral equation 

 

As Fredholm or Volterra integral equation, linear or nonlinear and 

homogeneous or non-homogeneous. The limits of integration are 

constants and the function  ( )  appears twice, therefore the equation 

(1.35) is a Fredholm integral equation of the second kind. 
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Further, the unknown function appears under the integral sign with 

power 2 indicating the equation is a non-linear equation. The non-

homogeneous part f(s) appears in the equation showing that it is a non-

homogeneous equation. 

Check your Progress-1 

1. Define Linear Integral Equation 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain Fredholm Linear Integral Equation 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. State Volterra integral equation of the First Kind. 

__________________________________________________________

__________________________________________________________

_______________________________________ 

 

1.4 RELATIONS BETWEEN 

DIFFERENTIAL AND INTEGRAL 

EQUATIONS 
 

To convert the Differential Equations to Integral equations, the following 

results are necessary: 

1.4.1 Leibnitz Rule of Differentiating Under The 

Integral Sign  

If F(x,t) and 
  (   )

  
 are continuous functions of x and t in the domain   ≤ 

x  ≤  , t0 ≤ t ≤ t1, 

then 
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provided the limits of integration a(x) and b(x) are defined functions 

having continuous derivatives for   ≤ x ≤  . This rule may be used to 

convert integral equations to equivalent ordinary differential equations. 

In particular, we have 

 

(i) For Volterra Integral Equation: 

 

 

(ii) For Fredholm Integral Equation: 

 

 

Here u(t) is independent of x and hence on taking partial derivatives with 

respect to x, u(t) is treated as constant. 

1.4.2 Cauchy’s Formula for Repeated Integration  

Let f  be a continuous function on real line. Then, the n
th 

repeated integral 

of  f  based at a is given by single integration: 

 

 

Proof: The proof will be established using Mathematical Induction. 

Since f is continuous, the base case follows from the Fundamental 

theorem of calculus:  

Let 
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Now, suppose result is true for -, and let us prove it for - + 1. Apply the 

induction hypothesis and switching the order of integration, 

 

 

 

 

Hence the proof follows. This n-fold integrals is an essential and useful 

formula that has enormous applications in the integral equation 

problems. 

1.4.3 Converting IVP to Volterra Integral 

Equations 

 • An Initial Value Problem 

 

Example 1 
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Let 

 

 

Integrating with respect to between limit 0to x, we have 

 

 

 

 

Again integrating  

 

 

 

Where A and B are constant using Cauchy‟s Formula 

 

Now using the initial conditions, y(0) = 1, y'(0) = 0 , we get  

y(0) = 0 + B i.e., B=1  

y'(0) = 0 + A ,i.e., A=0 Hence (1.42), becomes 

 

From (1.39) and (1.42), we have 

Now, substituting the value of F(x) from (1.44) in (1.43), we get 

 

 



Notes 

20 

 

which is a Volterra integral equation of second kind in y (x) 

 

• General Initial Value Problem Reduce the initial value problem 

 

 

 

 

 

Solution: 

 

Integrating over „a‟ to „x‟, we have 

 

Integrating by parts, we have 

 

 

or 

 

Again integrating over a to x, we obtain by Cauchy‟s Formula 
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It implies 

 

 

 

where 

 

this is required result. 

Note: To convert an IVP to Volterra Integral equation, integrate between 

the initial value and x. 

1.4.4 Converting BVP to Fredholm Integral 

Equations  

The method is similar to that discussed in previous section with some 

exceptions that are related to the boundary conditions. We demonstrate 

this method with an illustration. 

Check your Progress-2 

4. State Cauchy‟s Formula for Repeated Integration 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

5. Explain how to convert IVP to Volterra Integral Equations 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

1.5LET US SUM UP 
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In this chapter, we have discussed the classifications of integral 

equations such as Fredholm Integral Equation, Volterra Integral Equation 

and many others along with the kinds of particular equation. After that 

we studied the relation between Integral equation and Differential 

equation with the conversion of Initial Value Problem into Volterra 

Integral Equation and Boundary Value Problem into Fredholm Integral 

Equation. 

1.6 KEYWORDS 
 

1. Dimensional Vector: In mathematics, the dimension of a vector 

space V is the cardinality (i.e. the number of vectors) of a basis of V 

over its base field 

2. Finite Interval - A finite interval (bounded interval) is an interval, 

whose both endpoints are numbers 

1.7QUESTIONS FOR REVIEW 
 

1. Classify each of the following integral equations as Volterra or 

Fredholm integral equation, linear or nonlinear, and homogeneous or 

non-homogeneous; 

 

 

 

Find the equivalent Volterra integral equation to the following initial 

value problem 
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1.8 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

1.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

 1. Provide definition  – 1.2 

2. Provide definition with the help of equation – 1.3.1 

3.Provide explanation with the help of equation – 1.3.2 

4. Provide Formula – 1.4.2  

4. Provide explanation – 1.4.3   
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UNIT-2 KERNELS AND ITS TYPES 
 

STRUCTURE 

2.0 Objectives 

2.1 Introduction 

2.2 Types of Kernels 

 2.2.1 Symmetric Kernel  

2.2.2 Separable Kernel  

2.2.3 Resolvent Kernel  

2.2.4 Iterated Kernels 

2.3 Eigenvalues and Eigen functions 

2.4 Reduction of Integral Equations to System of Algebraic Equations 

2.5 Fredholm Alternative 

2.6 Let us sum up 

2.7 Keywords 

2.8 Questions for Review 

2.9 Suggested Reading and References 

2.10 Answers to Check your Progress 

2.0 OBJECTIVES 
 

Understand the concept of Different types of kernels 

Understand Eigenvalues and Eigen functions 

Enumerate Reduction of Integral Equations to System of Algebraic 

Equations 
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2.1 INTRODUCTION 
 

We will explore different types of kernels in this Chapter. We will 

understand the relationship of Eigen values and functions with kernels. 

2.2 TYPES OF KERNELS 
 

The following special cases of the kernel of an integral equation are of 

main interest:-  

(i) Symmetric Kernel  

(ii) Separable Kernel  

(iii) Resolvent Kernel  

(iv) Iterated Kernels 

2.2.1 Symmetric Kernel  

A Kernel  K (s,t) is symmetric (or complex symmetric or Hermitian) if      

 

   K (s,t) = K* (t, s) 

 

where the asterisk denotes the complex conjugate. For a real kernel, this 

coincides with definition  

K (s,t) = K (t, s) 

For example, sin(x,t) , log xt , x
2
t
2
 + xt + 1 etc. are all symmetric kernels. 

Again, sin(2x + 3t ) and x
2
t
3
 + 1 are not symmetric kernels. Again i(x − t 

) is a symmetric kernel, since in this case, if K (x, t) = i(x – t), then  

K (t, x) = i (t – x), and so 

 

 

On the other hand, i(x + t) is not a symmetric kernel, since in this case, if 

K (x, t) = i(x + t), then  

 

 

and so  



Notes 

26 

2.2.2 Separable or Degenerate Kernel  

A kernel K(s,t) is called separable or degenerate if it can be expressed as 

the sum of a finite number of terms, each of which is the product of a 

function of s only and a function of t only, that is 

 

 

 

 

Remark. The functions ai(s) can be assumed to be linearly independent, 

otherwise the number of terms in relation (1.59) can be reduced (by 

linear independence it is meant that, if  c1a1 + c2a2 + …+ cnan = 0. where 

ci are arbitrary constants, then c1 = c2 = … = cn = 0 

 

2.2.3 Resolvent Kernel Suppose solution of integral 

equations 

 

 

Then R (x, t ; λ)or Γ(x, t ; λ)is called the Resolvent kernel or reciprocal 

kernel of the given integral equation 
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2.2.4 Iterated Kernels  

Consider Fredholm integral equation of the second kind 

 

Then, the iterated kernels Kn(x,t), n = 1,2,3, ⋯ are defined as follows:  

 

 

 

2.3 EIGENVALUES AND EIGEN 

FUNCTIONS 
 

Consider the homogenous Fredholm Integral equation 

 

 

 

 

Then (2.0) has the obvious solution y(x) = 0, which is called the zero or 

trivial solution of (2.0). The values of the parameter λ for which (2.0) has 

a non-zero solution y(x)  ≠ 0 are called the eigenvalues of (2.0) or of the 

kernel  K(s, t) and every non-zero solution of (2.0) is called an 

eigenfunction corresponding to the eigenvalue λ. 

 

Remark 1. The number λ = 0 is not an eigenvalue since for λ = 0 it 

follows from (2.0) that y(x) = 0. 

 

Remark 2. If y(x)  is an eigenfunction of (2.0), then cy(x), where c is an 

arbitrary constant, is also an eigen function of (2.0) which corresponds to 

the same eigenvalue λ. 
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Remark 3.A homogenous Fredholm integral equation of the second kind 

may, generally, have no eigenvalue and eigenfunction, or it may not have 

any real eigenvalue or eigenfunction. 

Check your Progress-1 

1. Define  

a. Separable or Degenerate Kernel 

b. 2.2.4 Iterated Kernels 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. What is Eigen Value and Eigen Function? 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2.4 REDUCTION OF INTEGRAL 

EQUATIONS TO SYSTEM OF 

ALGEBRAIC EQUATIONS 
 

In Lesson-l, we have defined a degenerate or a separable kernel  

K (s, t)  as 

 

 

 

where the functions a1(s) , a2(s) , … an(s) and the functions b1(s) , b2(s) , 

… bn(s) are linearly independent. With such a kernel, the Fredholm 

integral equation of the second kind. 
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becomes 

 

It emerges that the technique of solving this equation is essentially 

dependent on the choice of the complex parameter ' and on the definition 

of 

 

The quantities ci are constants. Substituting Equations (2.4) in (2.3) we 

get 

 

and the problem reduces of finding the quantities ci. To this end, we put 

the value of g(s) as given by equation (2.5) in (2.3) and get 

 

but the functions ai(s) are linearly independent, therefore, 

 

Using the simplified notation 

 



Notes 

30 

Where fi  and aik are known constants, equation (2.7) becomes 

 

that is, a system of n algebraic equations for the unknowns ci. The 

determinant D (λ) of this system is 

 

which is a polynomial in λ of degree at most n. Moreover, it is not 

identically zero. Since, when  λ = 0, it reduces to unity. For all values of 

λ for which D(λ) ≠ 0, the algebraic system (2.9), and thereby the integral 

equation (2.2), has a unique solution. These values of λ are called 

regular, on the other hand, for all values of λ for which D(λ) becomes 

equal to zero, the algebraic system (2.9) and with it the integral equation 

(2.2), either insoluble or has an infinite number of solutions. Setting λ = 

1/μ  in equation (2.9) we have the eigenvalue problem of matrix theory. 

The eigenvalues are given by the polynomial D(λ) = 0.They are also the 

eigenvalues of integral equation. 

 

Example 1. Solve the Fredholm integral equation of second kind 

 

The kernel K(s,t)  is separable and we can set 

 

therefore equation (2.11) becomes 
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Using (2.12) in (2.11), we obtain the algebraic equations 

 

 

 

The solution of these equations is readily obtained as 

By equations (2.13) and (2.15), we get the solution 

 

Example 2. Solve the integral equation 

 

And find the eigenvalues. 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting these values in equation (2.9), we have the algebraic system 
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The determinant D(λ) = 0 gives                . Thus, the 

eigenvalues are 

 

 

 

For these two values of λ., the homogenous equation has a nontrivial 

solution, whereas the integral equation (2.17) is, in general, not soluble. 

When λ differs from these values, the solution of the preceding algebraic 

system is 

 

 

 

 

 

 

 

Using the relation (2.5), there results the solution 

 

 

The function Γ(s, t; λ), 

 

 

 

 

is called the resolvent kernel. We have. therefore succeeded in inverting 

the integral equation because the right-hand side of the preceding 

formula is a known quantity. 

Example 3.Invert the integral equation 
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As in the previous examples, we set 

 

 

 

To obtain 

 

Multiply both sides of this equation by cos and integrate from 0to 2ê. 

This gives 

 

From equations (2.22) and (2.21), we have the required formula: 

 

Example 4. Find the resolvent kernel for the integral equation  

For this equation,  
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Therefore, the corresponding algebraic system is 

 

Substituting the values of c1 and c2 as obtained from Equation (2.25) in 

(2.5) yields the solution 

 

Thus, the resolvent kernel is 

 

2.5 FREDHOLM ALTERNATIVE 
 

In the previous sections, we have seen that, if the kernel is separable, the 

problem of solving an integral equation of the second kind reduces to 

that of solving an algebraic system of equations. Although the integral 

equations with degenerate kernels are not found frequently in practice, 

yet the results derived for such equations are essential to study integral 

equations of more general types.  

Furthermore, any reasonably well-behaved kernel can be expressed as an 

infinite series of degenerate kernels. When an integral equation cannot be 

solved in closed form, then we have to use approximate methods to solve 
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a given integral equation. However any approximate methods can be 

employed with confidence only if the existence of the solution is known 

in advance.  

The Fredholm theorems explained in this Lesson plan provide such an 

assurance. The basic theorems of the general theory of integral equations, 

which were first presented by Fredholm, correspond to the basic 

theorems of linear algebraic systems. Here, we shall deal with degenerate 

kernels and borrow the results of linear algebra. In Section 2.3, we have 

found that the solution of the present problem rests on the investigation 

of the determinant (2.10) of the coefficients of the algebraic system (2.9). 

If D(λ) ≠ 0, then that system has only one solution, given by Cramer's 

rule 

 

Where Dhi denotes the cofactor of the (ℎ, s)th element of the determinant 

(2.10). Consequently, the integral equation (2.2) has the unique solution 

(2.5), which, in view of (2.33), becomes 

 

while the corresponding homogeneous equation 

 

 

 

has only the trivial solution g(s) = 0. Substituting for fi from (2.8) in 

(2.29), we can write the solution g(s) as 
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Now consider the determinant of (n + 1)th order 

 

By developing it by the elements of the first row and the corresponding 

minors by the elements of the first column, we find that the expression in 

the brackets is D(s, t ; λ) With the definition 

 

 

 

 

Equation (2.30) takes the simple form 

 

 

 

 

The function Γ(s, t ; λ) is the resolvent (or reciprocal) kernel we have 

already encountered in Examples 2 and 4 in the previous section. For the 

time being, we content ourselves with the observation that the only 

possible singular points of Γ(s, t ; λ) in the λ plane are the roots of the 

equation D(λ) = 0, i.e., the eigen values of the kernel  

K(s,t) The above discussion leads to the following basic Fredholm 

theorem 
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Check your Progress-2 

3.State the necessary remarks for Eigen value and Eigen Function 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

4. Explain Fredholm Alternative 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2.6 LET US SUM UP 
 

In this chapter, we have discussed separable kernel and how to solve 

Fredholm integral equation of the second kind with separable kernel. 

Also we discussed the method of finding eigenvalue and Eigen function 

of the fredholm integral equation of the second kind by reducing the 

equation to an algebraic system of equation. 

2.7 KEYWORDS 
 

3. Linearly independent function : Two functions y 1 and 

y 2 are said to be linearly independent if neither function is a constant 

multiple of the other. 

4. Polynomial - an expression of more than two algebraic terms, 

especially the sum of several terms that contain different powers of 

the same variable(s). 

3. Insoluble - infinite number of solutions 

2.8 QUESTIONS FOR REVIEW 
 

1. Solve the homogenous Fredholm integral equation 

2. Find the eigenvalues and 
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eigenfunctions of the homogenous integral equation 

 

 

3. Solve the following integral equations: 

 

 

2.9 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

2.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide  definition – 2.2.2 & 2.2.4  

2. Provide explanation– 2.3   

3. Provide remarks – 2.3 

4. Provide  explanation – 2.5 
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UNIT-3 FREDHOLM ALTERNATIVE 

THEOREM 

 

STRUCTURE 

3.0 Objectives 

3.1 Introduction 

3.2 Fredholm Alternative Theorem 

3.3 An Approximate Method 

3.4 Iterated Kernels or Functions 

3.5 Resolvent Kernel or Reciprocal Kernel 

3.6 Let us sum up 

3.7 Keywords 

3.8 Questions for Review 

3.9 Suggested Reading and References 

3.10 Answers to Check your Progress 

3.0 OBJECTIVES 
 

Comprehend the Fredholm Alternative Theorem and An Approximate 

Method 

Understand the concept of Iterated Kernels or Functions 

Understand the concept of Resolvent Kernel or Reciprocal Kernel 

3.1 INTRODUCTION 
 

In mathematics, Fredholm's theorems are a set of celebrated results 

of Ivar Fredholm in the Fredholm theory of integral equations. There are 
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several closely related theorems, which may be stated in terms of integral 

equations, in terms of linear algebra, or in terms of the Fredholm 

operator on Banach spaces. 

The Fredholm alternative is one of the Fredholm theorems. 

 

3.2 FREDHOLM ALTERNATIVE 

THEOREM. 
 

Either the integral equation 

with fixed λ possesses one and only one solution g(s) for arbitrary 

functions f(s) and  K(s,t), in particular the solution g = 0 for f = 0; or the 

homogeneous equation 

 

possesses a finite number r of linearly independent solutions    
  i = 1,2, 

⋯ , r. In the first case, the transposed inhomogeneous equation 

 

also possesses a unique solution. In the second case, the transposed 

homogeneous equation 

 

also has r linearly independent solutions    
, s = 1,2, ⋯ , r; the 

inhomogeneous integral equation (2.27) has a solution if and only if the 

given function f(s) satisfies the r conditions 
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In this case, the solution of (3.1) is determined only up to an additive 

linear combination ∑      

 
    

 

The following examples illustrate the theorems of this section. 

 

Example 1. Show that the integral equation 

 

possesses no solution for f(s) = s, but that it possesses infinitely many 

solutions when f(s)  = 1. For this equation, 

 

Therefore, 

 

The eigenvalues are  
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and equation (1) contains        

 

Therefore, we have to examine the Eigen functions of the transposed 

equation (note that the kernel is symmetric) 

 

 

 

 

The algebraic system corresponding to (3) is 

 

 

 

which gives 

 

 

 

Therefore, the Eigen functions for        I follow from the relation 

(2.5) and are given by 

 

 

Since 

 

 

 

While 

 

 

 

Example 2. Solve the integral equation 

 

The algebraic system (2.9) for this equation is 
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While 

 

 

 

 

 

 

Therefore, the inhomogeneous equation (1) will have a unique solution if 

and only if λ≠ ±2. Then the homogeneous equation 

 

 

 

has only the trivial solution. Let us now consider the case when ' is equal 

to one of the eigen values and examine the eigen functions of the 

transposed homogeneous equation 

 

For λ = +2, the algebraic system (2.59) gives c1 = 3c2. Then, (2.5) gives 

the eigenfunction 

 

 

where c is an arbitrary constant. Similarly, for λ = −2, the corresponding 

Eigen function is 

 

 

 

It follows from the above analysis that the integral equation 
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will have a solution if f(s) satisfies the condition 

 

 

 

while the integral equation 

 

 

 

 

Will have a solution if the following holds: 

 

 

 

 

3.3 AN APPROXIMATE METHOD 
 

We propose to describe a useful method for finding approximate 

solutions of some special type of integral equations. We shall explain this 

method with the help of following example 

 

Example 1. Solve the integral equation 

 

 

 

 

Solution:  Let us approximate the kernel by the sum of the first three 

terms in its Taylor series : 

 

Which is a separable kernel. Then, the given integral equation takes the 

form 
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Then (1) gives 

 

 

Substituting the value of y(t) given by (2.71) in (2.67) we get 

 

Substituting the value of y(t) given by (7) in (4), we get 

 

Substituting the value of y(t) given by (7) in (5), we get 
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Solving (7), (8) and (9) leads to 

 

 

 

With these values, (6) gives the required approximate solution of (1) as 

 

Now as usual, we prove that the exact solution of given equation 

 

is given by 

 

 

 

From (12), y(t) = 1. Then, we have 

 

Hence y(x) = 1 is the exact solution of (12). 

Using the approximate solution (11) for x = 0, x = 0.5and x = 1.0, the 

values of y(x)=1.0000, y(0.5) = 1.0000 and y(1)=1.0080 which agrees 

with exact solution (12) rather closely. 

3.4 ITERATED KERNELS OR 

FUNCTIONS 
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 Definition. 

i) Consider Fredholm integral equation of the second kind 

Then, the iterated Kn ∶ n = 1, 2, 3, … are defined as follows: 

 

 

and 

(ii) Consider Volterra integral equation of the second kind 

 

Then, the iterated Kn ∶ n = 1, 2, 3, … are defined as follows: 

 

 

And 

 

 

 

3.5 RESOLVENT KERNEL OR 

RECIPROCAL KERNEL 
 

 Suppose solution of Fredholm integral equation of the second kind 
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Then R(x, t; λ) or Γ(x, t; λ) is known as the resolvent kernel of (1).  

ii) Suppose solution of Volterra integral equation of the second kind 

 

 

Then R(x, t; λ) or Γ(x, t; λ) is known as the resolvent kernel of (3). 

 

3.5.1 Theorem: The m
th 

 iterated kernel Km(x, t) satisfies the relation 

 

 

 

where r is any positive integer less than m. 

Proof. The m
th

 iterated kernel Km(x, t) is defined as 

 

 

and 
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Re-writing (6), we have 

 

Replacing m by m – 1 in (6), we have 

 

or 

 

Using (8), (7) reduces to 

 

Proceeding likewise, we obtain 
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Note that R.H.S. of (9) is a multiple integral of order + – 1.Proceeding as 

above, we may also write. 

 

[by (10) and (11)] 

 

 

 

 

[on changing the order of integration]  

Note that the order of the multiple integral on R.H.S. of (8) is 1 + (r – 1) 

+ (m – r – 1),that is, m – 1 . We have already proved that the order of the 

multiple integral on R.H.S. of (3.1.3) is also m – 1. Thus, multiple 

integrals involved in Km(x, t) and  ∫   (   )    (   )   
 

 
 are both of 

the same order, namely, (m– 1)
th

 . 
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Now, changing the variables of integrations in (8) without changing the  

limits of integration according to the following scheme 

We obtain 

 

 

 

 

From (7) and (13), we obtain 

 

 

Check your Progress-1 

1. Explain Fredholm Alternative Theorem. 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2. Define Iterated Kernels or Functions 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Provide statement of theorem for Resolvent Kernel 

__________________________________________________________

__________________________________________________________

_______________________________________ 
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3.6 LET US SUM UP 
 

We also discussed Fredholm‟s alternative and an approximated method 

for solving Fredholm‟s integral equation of the second kind with 

separable kernel. 

3.7 KEYWORDS 
 

5. An arbitrary function simply means that it is a function that 

you are free to define in any way you want  

 

6. Multiple Integrals - is a generalization of the usual integral in one 

dimension to functions of multiple variables in higher-dimensional 

spaces, which is an integral of a function over a two-dimensional 

region. The most common multiple integrals are double and triple 

integrals, involving two or three variables 

 

3.8 QUESTIONS FOR REVIEW 
 

1. Solve the equation by considering separately all exceptional cases. 

 

 

2. Construct the resolvent kernels for the following kernels for specified 

a and b. 

 

 

 

3. Find the resolvent kernel associated with the following kernels :  

i. |x – t| in the interval (0, 1) 

ii. cos (x+ t) in the interval (0, 2 ) 



Notes 

53 

3.9 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

3.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation  – 3.2 

2. Provide definition with the help of equation – 3.4 

3.Provide statement – 3.5.1 
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UNIT-4 METHOD OF SUCCESSIVE 

APPROXIMATIONS  
 

STRUCTURE 

4.0 Objectives 

4.1 Introduction 

4.2 Method of Successive Approximations for Fredholm Integral 

Equation of the Second Kind 

4.3 Conditions of Convergence 

4.4 Uniqueness of Series Solution 

4.5 Different type of Examples 

4.6 Let us sum up 

4.7 Keywords 

4.8 Questions for Review 

4.9 Suggested Reading and References 

4.10 Answers to Check your Progress 

4.0 OBJECTIVES 
 

Understand the Method of Successive Approximations for Fredholm 

Integral Equation of the Second Kind 

Comprehend the Conditions of Convergence 

Enumerate the Uniqueness of Series Solution 

4.1 INTRODUCTION 
 

By converting integral equation of the first kind to a linear equation of 

the second kind and the ordinary differential equation to integral 

equation we are going to solve the equation easily. The method of 
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successive approximations (Neumann‟s series) is applied to solve 

linear and nonlinear Volterra integral equation of the second kind. 

Some examples are presented to illustrate methods. 

4.2 METHOD OF SUCCESSIVE 

APPROXIMATIONS FOR FREDHOLM 

INTEGRAL EQUATION OF 

THE SECOND KIND 
 

4.2.1  Iterative Scheme  

Consider Fredholm integral equation of the second kind 

 

 

 

As a zero-order approximation to the required solution y(x), let us take 

 

 

 

Further, if yn(x) and yn – 1 (x) are the n
th

 order and (n − 1 )
th

-order 

approximations respectively, then these are connected by 

 

 

We know that the iterated kernels (or iterated functions) Kn (x, t), (n = 1, 

2, 3, . . . ) are defined by 

 

 

 

 

And 
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Putting n = 1 in (4.2), the first-order approximation, y1(x) is given by 

 

 

But from (4.1) 

 

 

 

Substituting the above value of y0(t) in (4.2), we get 

 

Putting n = 2 in (4.2), the second-order approximation y2(x) is given by 

 

 

Replacing x by z in (4. 7), we get 

 

Substituting the above value of  y1(z) in (3.28), we get 
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[On changing the order of integration in third term on R.H.S of (4.10)] or 

 

 

[using (4.3) and (4.4)] 

 

 

 

 

Proceeding likewise, we easily obtain by Mathematical induction the nth 

approximate solution yn(x) of (4.10) as 

 

Proceeding to the limit as n → ∞ , we obtain the so called Neumann 

series. 

 

We now determine the resolvent kernel (or reciprocal kernal) R(x, t; λ) or 

Γ(x, t; λ) in terms of the iterated kernels Kn(x, t).For this purpose, by 

changing the order of integration and summation in the so called 

Neumann series (4.13), we obtain 

   

Comparing (4.14) with 
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Here 

 

4.3 CONDITIONS OF CONVERGENCE 
 

For the Condition of convergence of (4.13), consider the partial sum 

(4.12) and apply the Schwarz inequality to the general term of this series. 

This leads us to 

 

Let 

 

Further, let   
  denote the upper bound of the integral ∫    (   )  

 

 
   

so that 

 

Using (3.18) and (3.19), (3.20) reduces to 

 

 

Now, applying the Schwarz inequality to relation 
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We get 

 

which when integrated with respect to t, gives 

  

where  

 

The inequality (4.22) gives rise to the recurrence relation 

 

Using (4.21) and (4.24), we get 

 

showing that the general term of the partial sum (4.12) has a magnitude 

less than the quantity DC1|λ|
m

B
m – 1 

. Hence the infinite series (4.13) 

converges faster than the geometric series with common ratio |λ| B. It 

follows that, if the condition 

 

is satisfied, then the series (4.13) will be uniformly convergent. 
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Check your Progress-1 

1. Discuss Iterative Scheme 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2. Explain Conditions of Convergence 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.4 UNIQUENESS OF SERIES SOLUTION 
 

Uniqueness of Solution for a given λ: If possible, let (4.10) possess two 

solutions y1(x) and y2(x). Then we have 

 

Subtracting (4.28) from (4.27), we have 

 

which is homogeneous integral equation. Applying the Schwarz 

inequality to (4.30), we have 
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or 

 

 

 

givi

ng   ( )= 0, using (4.24) or y1(x) – y2(x) = 0 or y1(x) = y2(x) showing 

that (4.10) has a unique solution. 

 

From the uniqueness of the solution of (3.20), we now proceed to show 

that the resolvent kernel R (x, t; λ) is also unique. If possible, let equation 

(4.10) have, with λ = λ0 , two resolvent kernels R1 (x, t; λ) and R2 (x, t; 

λ). In view of the uniqueness of the solution (4.10), an arbitrary function 

f(x) satisfies the identity 

 

Setting F (x, t; λ0) = R1 (x, t; λ0)  -  R2 (x, t; λ0)  (4.32) reduces to 

 

for an arbitrary function f (t). Let us choose f (t) =   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with fixed 

x. Here   (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the complex conjugate of F (x, t; λ0). Then 

(4.33) reduces to 
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showing that the resolvent kernel in unique. The above analysis can be 

summed up in the following basic theorem. 

 

4.4.1 Theorem To each L2 -kernel K (x, t) there corresponds a unique 

resolvent kernel R (x, t; λ) which is an analytic function of λ, regular at 

least inside the circle| λ | < B – 1, and represented by the power series 

 

 

 

 

Furthermore, if f(x) is also an  L2 - function, then the unique L2 - solution 

of the FredholmEquation 

 

 

 

valid in the circle λ < B 
– 1

 is given by the formula 

 

4.5 DIFFERENT TYPE OF EXAMPLES 
 

Type 1. Determination of the resolvent kernel or reciprocal kernel R (z, 

t; λ) or Г (z, t; λ) If Kn (x, t) be iterated kernels then R (z, t ∶ λ) = Г(z, t ; 

λ) = ∑      
     

Example 1.Determine the resolvent kernels for the Fredholm integral 

equation having kernels:  

 

 

 

Sol. (i) Iterated kernels  Km(x, t) are given by 

 

And 
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From (4.34) 

 

 

 

Putting n = 2 in (4.36), we have 

Putting n = 3 in (4.36), we have 

 

and so on. Observing (4.36), (4.37) and (4.36), we may write 

 

 

Now, the required resolvent kernel is given by 
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which is an infinite geometric series with common ratio {λ(e
2
 – 1)}/2 

 

Provided 

 

 

Using (4.40) and (4.41), (4.42) reduces to 

 

Part (ii) Iterated Kernels Km(x, t) are given by 

K1(x, t) = K (x, t)     (4.43) 

And 

From (4.43) 

  

 

Putting n = 2 in (3.64), we have 
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Next, putting n = 3 in (4.44), we have 

 

and so on. Observing (4.44), (4.45) and (4.44), we may write 

 

Now, the required resolvent kernel is given by 

 

which is an infinite geometric series with common ratio (2 /3) 

 

 

Using (4.50) and (4.51), (4.52) reduces to 
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Type 2: Solution of Fredholm integral equation with help of the 

resolvent kernel. Working Rule: Let 

 

 

Be given Fredholm integral equation. Let Km (x, t) be m
th 

iterated kernel 

and let R (x, t, λ) be the resolvent kernel of (4.53). Then we have 

 

Suppose the sum of infinite series (4.54) exists and so R (x, t; λ)can be 

obtained in the closed form. Then, the required solution of (4.53) is given 

by 

 

Type 3: Solution of Fredholm integral equation when the resolvent 

kernel cannot be obtained in closed form i.e., the sum of infinite series 

occurring in the formula of the resolvent kernel cannot be determined. In 

such integral equation, we use the method of successive approximations 

to find solutions upto third order.  

Working Rule : Let the given Fredholm integral equation of the second 

kind be 

 

 

 

As zero-order approximation, we take 
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If n
th

- order approximation be yn (x), then 

 

Remark. Sometimes the zero-order approximation is mentioned in the 

problem. In that case,we modify equation (4.57) according to data of the 

problem. 

Check your Progress-2 

3. Explain Uniqueness of Series Solution 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. State the theorem of Uniqueness of Series Solution 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.6 LET US SUM UP 
 

 In this chapter we have discussed Method of Successive Approximations 

for Fredholm Integral Equation of the second kind. In which iterative 

scheme is discussed. As we know that convergence and uniqueness is an 

important phenomenon so conditions of convergence and uniqueness of 

series solution is also discussed 

4.7 KEYWORDS 
 

1. Complex Conjugate - each of two complex numbers having their 

real parts identical and their imaginary parts of equal magnitude but 

opposite sign. 
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2. Kernel of an integral equation:  The function K(x, y) in the above 

equations is called the kernel of the equation 

3. Geometric Series: a geometric series is a series with a constant 

ratio between successive terms. 

4.8 QUESTIONS FOR REVIEW 
 

1. Solve 

 

2. Solve the following integral equations by the method of successive 

approximations: 

 

 

 

3. Using iterative method, solve 

 

 

4.9 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 
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4.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation  – 4.2.1 

2. Provide explanation – 4.3 

3.Provide explanation – 4.4 

4. Provide statement – 4.4.1  

 

 



70 

UNIT-5 FREDHOLM THEOREMS 
 

STRUCTURE 

5.0 Objectives 

5.1 Introduction 

5.2 What is Fredholm equation? 

5.3 Fredholm's First Theorem 

5.4 Fredholm's Second Theorem 

5.5 Fredholm's Third Theorem 

5.6 Let us sum up 

5.7 Keywords 

5.8 Questions for Review 

5.9 Suggested Reading and References 

5.10 Answers to Check your Progress 

5.0 OBJECTIVES 
 

Understand the Fredholm equation 

Comprehend Fredholm's First, Second and Third Theorem 

5.1 INTRODUCTION 
 

In mathematics, Fredholm theory is a theory of integral equations. In 

the narrowest sense, Fredholm theory concerns itself with the solution of 

the Fredholm integral equation. In a broader sense, the abstract structure 

of Fredholm's theory is given in terms of the spectral theory of Fredholm 

operators and Fredholm kernels on Hilbert space. The theory is named in 

honour of Erik Ivar Fredholm. 
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5.2 WHAT IS FREDHOLM EQUATION? 
 

Fredholm gave the solution of equation 

 

 

 

in general form for all values of the parameter λ. His results are 

contained in three theorems which bear his name. 

The method used by Fredholm consists in viewing the integral equation 

(5.1) as the limiting case of a system of linear algebraic equations. This 

theory applies to two-or higher-dimensional integrals, although we shall 

confine our discussion to only one dimensional integrals in the interval 

(a, b) . Let us divide the interval (a, b)into equal parts 

 

s1 = t1 = a, s2 = t2 = a+h , …, sn = tn = a + (n – 1) h 

 

 

 

 

where   
   

 
 . Thereby, we have the approximate formula 

 

Equation (5.1) then takes the form 

 

which must hold for all values of s in the interval (a, b)  

In particular, this equation is satisfied at the n points of division si , i 

 = 1,2, … , n.This leads to the system of equations 
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equation (5.4) yields an approximation for the integral equation (4.1) in 

terms of the system of linear equations 

 

inunknown quantities g1,g2, …, gn. The values of Ã=obtained by solving 

this algebraic system are approximate solutions of the integral equation 

(1) at the points s1,s2, …, sn We can plot these solutions gi as ordinates 

and by interpolation draw a curve g(s)which we may expect to be an 

approximation to the actual solution. With the help of this algebraic 

system, we can also determine approximations for the eigen values of the 

kernel. 

The resolvent determinant of the algebraic system (5.6) is 

 

 

The approximate eigenvalues are obtained by setting this determinant 

equal to zero. We illustrate it by the following example  

Example. Consider 

 

 

By taking n = 3, we have ℎ = 
 

 
 and therefore 
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and the values of Kij  are readily calculated to give 

 

 

 

The homogeneous system corresponding to (4.6) will have a nontrivial 

solution if the determinant 

 

 

 

or when 1 – 3(0.0907)
2
λ

2
 = 0 The roots of this equation are λ = ±0.6365. 

This gives a rather close agreement with the exact values, which are 

 
√ 

 
        . In general, the practical applications of this method are 

limited because one has to take a rather large n to get a reasonable 

approximation. 

5.3 FREDHOLM'S FIRST THEOREM 
 

The solutions g1,g2, …, gn of the system of equations (5.6) are obtained 

as ratios of certain determinants, with the determinant Dn (λ) given by 

(5.7) as the denominator provided it does not vanish. Let us expand the 

determinant (5.7) in powers of the quantity (−λℎ). The constant term is 

obviously equal to unity. The term containing (−λℎ) in the first power is 

the sum of all the determinants containing only one column −λℎKμv, μ = 

1,2, … , n. Taking the contribution from all the columns v = 1, … . , n, 

we find that the total contribution is −λℎ ∑    
 
   . 

The factor containing the factor (−λℎ) to the second power is the sum of 

all the determinants containing two columns with that factor. This results 

in the determinants of the form 
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where (p, q)  is an arbitrary pair of integers taken from the sequence 1, … 

, n, with p < q. In the same way, it follows that the term containing the 

factor (−λℎ)
3 

is the sum of the determinants of the form 

 

 

 

 

 

Where (p, q, r )is an arbitrary triplet of integers selected from the 

sequence 1, … , , with p < q < r.  

The remaining terms are obtained in a similar manner. Therefore, we 

conclude that the required expansion of Dn(λ)is 

 

 

 

 

 

 

 

 

 

 

 

 

where we now stipulate that the sums are taken over all permutations of 

pairs (p, q), triplets (p,q,r), etc. This convention explains the reason for 

dividing each term of the above series by the corresponding number of 

permutations.  

The analysis is simplified by introducing the following symbol for the 

determinant formed by the values of the kernel at all points (si, tj)the so- 
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called Fredholm determinant. We observe that, if any pair of arguments 

in the upper or lower sequence is transposed, the value of the determinant 

changes sign because the transposition of two arguments in the upper 

sequence corresponds to the transposition of two rows of the determinant 

and the transposition of two arguments in the lower sequence 

corresponds to the transposition of two columns. 

 

In this notation, the series (5.8) takes the form 

 

 

 

 

 

If we now let n tend to infinity, then ℎ will tend to zero, and each term of 

the sum (5.10) tends to some single, double, triple integral, etc. There 

results Fredholm‟s first series: 

 

 

 

 

 

 

Hilbert gave a rigorous proof of the fact that the sequence Dn(λ) → D (λ) 

in the limit, while the convergence of the series (5.11) for all values of 

was proved by Fredholm on the basis that the kernel K(s,t) is a 

boundedand integrable function. Thus, D (λ) is an entire function of the 

complex variable λ.  

We are now ready to solve the Fredholm equation (5.1) and express the 

solutions in the form of a quotient of two power series in the parameter λ, 

where the Fredholm function D (λ) is to be the divisor. We seek solutions 

of the form 
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and expect the resolvent kernel Γ(s, t; λ) to be the quotient 

 

 

 

where D(s, t ; λ)still to be determined, is the sum of certain functional 

series. Now, the resolvent Γ(s, t; λ) itself satisfies a Fredholm integral 

equation of the second kind : 

From (5.13) and (5.14), it follows that 

 

The form of the series (5.11) for D(λ)suggests that we seek the solution 

of equation (5.15) in the form of a power series in the parameter λ 

 

For this purpose, write the numerical series (5.11) as 

 

 

 

 

where 

 

 

The next step is to substitute the series for D(s, t ; λ)and ä(‹)from (5.16) 

and (5.17) in (5.15) and compare the coefficients of equal powers of λ. 

The following relations result: 
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Our contention is that we can write the function  Cp (s, t) in terms of the 

Fredholm determinant (5.9) in the following way: 

 

In fact, for p = 1, the relation (5.20) becomes 

 

 

 

 

 

where we have used (5.18) and (5.19). To prove that (5.21) holds for 

general “we expand the determinant under the integral sign in the 

relation: 

 

 

 

with respect to the elements of the given row, transposing in turn the first 

column one place to the right, integrating both sides, and using the 

definition of cp in (5.18); the required result then follows by induction. 

From (5.16), (5.19), and (5.21) we derive Fredholm‟s second series: 
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This series also converges for all values of the parameter .It is interesting 

to observe the similarity between the series (5.11) and (5.23). Having 

found both terms of the quotient (5.13), we have established the 

existence of a solution to the integral equation (5.1) for a bounded and 

integrable kernel K (s, t) provided, of course, that D(λ) = 0. Since both 

terms of this quotient are entire functions of the parameter it follows that 

the resolvent kernel Γ(s, t; λ) is a meromorphic function of , i.e., an 

analytic function whose singularities may only be the poles, which in the 

present case are zeros of the divisor D(λ) .Next, we prove that the 

solution in the form obtained by Fredholm is unique and is given by 

 

In this connection, we first observe that the integral equation (4.14) 

satisfied by Γ(s, t; λ) is valid for all values of for which D(λ) ≠ 0.Indeed, 

(5.14) is known to hold for |λ| < B
– 1

  , and since both sides of this 

equation are now proved to be meromorphic, the above contention 

follows. To prove the uniqueness of the solution, let us suppose that g(s) 

is a solution of the equation (5.1) in the case D(λ)  ≠ 0. Multiply both 

sides of (5.1) by Γ(s, t; λ) integrate, and get 

Substituting from (5.14) into left side of (5.25), this becomes which, 

when joined by (5.1), yields 

but this form is unique. In particular, the solution of the homogeneous 

equation 
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is identically zero. The above analysis leads to the following theorem. 

Fredholm’s First Theorem. The inhomogeneous Fredholm equation 

 

where the functions f(s) and g(t) are integrable, has a unique solution  

 

where the resolvent kernel Γ(s, t; λ) 

 

with D (λ) ≠ 0, is a meromorphic function of the complex variable λ 

being the ratio of two entire functions defined by the series  

 

and  

 

both of which converge for all values of λ. In particular, the solution of 

the homogeneous equation 
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is identically zero. 

 

EXAMPLES 

 

Example 1.Evaluate the resolvent for the integral equation 

 

 

 

 

The solution to this example is obtained by writing 

 

 

 

 

 

Where Cp and cp are defined by the relations (5.18) and (5.20) 

 

 

 

 

 

 

 

 

 

Thus 
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Since C2 (x, t) vanishes, it follows from (5.35) that the subsequent 

coefficients Ck land ck also vanish. Therefore, 

 

 

 

5.4 FREDHOLM'S SECOND THEOREM 
 

Feedhole‟s first theorem does not hold when is a root of the equation ä() 

= 0. We know that, for a separable kernel, the homogeneous equation 

 

has nontrivial solutions. It might be expected that same holds when the 

kernel is an arbitrary integrable function and we shall then have a 

spectrum of eigen values and corresponding eigen functions. The second 

theorem of Fredholm is devoted to the study of this problem.  

 

We first prove that every zero of D(λ)is a pole of the resolvent kernel 

(5.31); the order of this pole is at most equal to the order of the zero of 

ä(). In fact, differentiate the Fredholm's first series (5.33) and interchange 

the indices of the variables of integration to get 

 

 

 

 

From this relation, it follows that, if qis a zero of order ‚of D(λ), then it is 

a zero of order ‚ − 1 of D'(λ) and consequently λ0 may be zero of order at 

most ‚k − 1 of the entire function D(s, t; λ)Thus, λ0 is the pole of the 

quotient (5.31) of order at most ‚. In particular, if λ0  is a simple zero of 

D(λ), then D(λ0) = 0, D'( λ0 ) ≠ 0, and λ0  is a simple pole of the resolvent 

kernel. Moreover, it follows from (5.37) that D(s, t; λ) ≠ 0. For this 

particular case, we observe from equation (5.8) that, if D (λ) = 0 and D 

(s, t; λ)≠ 0, then D(s, t; λ), as a function of 0, is a solution of the 
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homogeneous equation (5.36). So is αD(s, t; λ)where α is an arbitrary 

constant. Let us now consider the general case when is a zero of an 

arbitrary multiplicity +, that is, when 

 

 

where the superscript cstands for the differential of order c, c = 1, . . . , + 

− 1. For this case, the analysis is simplified if one defines a determinant 

known as the Fredholm minor: 

 

where{si} and {ti}, i = 1,2, … ,n, are two sequences of arbitrary 

variables. Just as do the Fredholm series (5.32) and (5.33), the series 

(5.39) also converges for all values of and consequently is an entire 

function of  λ. Furthermore, by differentiating the series (5.33) times and 

comparing it with the series (5.39), there follows the relation 

From this relation, we conclude that, if λ0 is a zero of multiplicity m of 

the function D(λ), then the following holds for the Fredholm minor of 

order m for that value of λ0: 

 

 

 

 

Of course, there might exist minors of order lower than m which also do 

not identically vanish. Let us find the relation among the minors that 
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corresponds to the resolvent formula (5.14). Expansion of the 

determinant under the integral sign in (5.39), 

 

by elements of the first row and integrating “times with respect to x1, x2, 

…, xp for p ≥ 1, we have  

 

 

 

 

 

 

 

 

Note that the symbols for the determinant on the right side of (4.42) do 

not contain the variables s1 in the upper sequence and the variables th or 

xh in the lower sequence. Furthermore, it follows by transposing the 

variable sh in the upper sequence to the first place by means of ℎ + n− 2 

transpositions that all the components of the second sum on the right side 

are equal. Therefore, we can write (5.42) as 
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where we have omitted the subscript ℎ from x. Substituting (5.43) in 

(5.42), we find that Fredholm minor satisfies the integral equation  

 

Expansion by the elements of any other row leads to a similar identity, 

with x placed at the corresponding place. If we expand the determinant 

(5.41) with respect to the first column and proceed as above, we get the 

integral equation 

 

and a similar result would follow if we were to expand by any other 

column. The formulas (5.44) and (5.45) will play the role of the 

Fredholm series of the previous section. 

Note that the relations (5.44) and (5.45) hold for all values of . With the 

help of (5.44), we can find the solution of the homogeneous equation 

(5.36) for the special case when  λ = λ0 is an eigenvalue. To this end, let 

us suppose that  λ = λ0 is a zero of multiplicity m of the function D(λ). 

Then, as remarked earlier, the minor Dm does not identically vanish and 

even the minors D1, D2, …D m – 1  may not identically vanish. Let Dr be 

the first minor in the sequence D1, D2, …D m – 1 that does not vanish 

identically. The number r lies between 1 and m and is the index of the 

eigenvalue λ0. Moreover, this means that D r – 1 = 0. But then the integral 

equation (5.44) implies that 
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is a solution of the homogeneous equation (5.36). Substituting  s at 

different points of the upper sequence in the minor Dr, we obtain r 

nontrivial solutions gi(s) = (0),  = 1, ⋯ , r, of the homogeneous equation. 

These solutions are usually written as 

 

 

 

 

Observe that we have already established that the denominator is not 

zero. The solutions Φi as given by (5.47) are linearly independent for the 

following reason. In the determinant (5.41) above, if we put two of the 

arguments 0=equal, this amounts to putting two rows equal, and 

consequently the determinant vanishes. Thus, in (5.47), we see that Φk 

(si) = 0 for i ≠ k‚, whereas Φk (sk)= 1. Now, if there exists a relation 

∑     
 
  ≡ 0 we may put s = si= and it follows that Ci ≡ 0; and this proves 

the linear independence of these solutions. This system of solutions Φi is 

called the fundamental system of the eigen functions of q and any linear 

combination of these functions gives a solution of (5.36). Conversely, we 

can show that any solution of equation (5.36) must be a linear 

combination of Φ1(s), Φ2(s), ⋯ , Φv(s). We need to define a kernel H(s, t; 

λ)which corresponds to the resolvent kernel Γ(s, t; λ )of the previous 

section 

 

 

 

 

In (4.45), take n to be equal to r, and add extra arguments s and t to 

obtain 
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In every minor Dr  in the above equation, we transpose the variable 0from 

the first place to the place between the variables sh-1 and sh+1 and divide 

both sides by the constant 

 

 

 

 

To obtain 

 

 

 

 

If g(s) is any solution to (5.36), we multiply (5.50) by g(t) and integrate 

with respect to t, 

 

where we have used (5.36) in all terms but the first; we have also taken 

 

Cancelling the equal terms, we have 

 

 

 

 

This proves our assertion. Thus we have established the following result. 

 

Fredholm's Second Theorem. 

If  λ0  is a zero of multiplicity m of the function D(λ) then the 

homogeneous equation 
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possesses at least one, and at most m, linearly independent solutions 

 

not identically zero. Any other solution of this equation is a linear 

combination of these solutions. 

 

5.5 FREDHOLM'S THIRD THEOREM 
 

Fredholm’s Third Theorem. For an inhomogeneous equation 

 

to possess a solution in the case D(λ0) = 0, it is necessary and sufficient 

that the given function f(s) be orthogonal to all the eigenfunctions Ψi(s),  

 i = 1,2, ⋯ , v, of the transposed homogeneous equation corresponding to 

the eigenvalue λ0. The general solution has the form 

 

 

 

Check your Progress-1 

1. Discuss Fredholm‟s First Theorem 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2. Explain Fredholm‟s Second Theorem 
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. State Fredholm‟s Third Theorem 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

5.6 LET US SUM UP 
 

We have studied three different theorems viz.,  Fredholm‟s First 

Theorem Fredholm‟s SecondTheorem Fredholm‟s Third Theorem. 

5.7 KEYWORDS 
 

4. meromorphic function - A meromorphic function is a single-

valued function that is analytic in all but possibly a discrete subset 

of its domain, and at those singularities it 

must go to infinity like a polynomial (i.e., these exceptional points 

must be poles and not essential singularities). 

5. complex variable - a variable that can take on the value 

of a complex number. 

6. Parameter - a numerical or other measurable factor forming one of a 

set that defines a system or sets the conditions of its operation. 

 

5.8 QUESTIONS FOR REVIEW 
 

1. Solve the integral equation using Fredholm's First Theorem 

 

 

 

2. Solve the integral equation using Fredholm's First Theorem 
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5.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation  – 5.3 

2. Provide explanation – 5.4 

3. Provide statement – 5.5  
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UNIT-6 GREEN FUNCTION I 
 

STRUCTURE 

6.0 Objectives 

6.1 Introduction 

6.2 Concept of Green Functions 

6.3 The method of variation of parameters  

6.4 Initial and Boundary Value Green‟s Functions 

 6.4.1 Initial Value Green‟s Function 

6.4.2 Boundary Value Green‟s Function 

6.5 Let us sum up 

6.6 Keywords 

6.7 Questions for Review 

6.8 Suggested Reading and References 

6.9 Answers to Check your Progress 

6.0 OBJECTIVES 
 

Understand the Green Function concept 

Comprehend the method of variation of parameters 

Comprehend Initial and Boundary Value Green‟s Functions 

6.1 INTRODUCTION 
 

Green's functions are named after the British mathematician George 

Green, who first developed the concept in the 1830s. In the modern study 

of linear partial differential equations, Green's functions are studied 

largely from the point of view of fundamental solutions instead. 
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In mathematics, a Green's function is response to the elementary 

impulse of an inhomogeneous linear differential operator, which is 

defined on a domain with specified initial or boundary conditions. 

This means that if L is the linear differential operator, then 

 the Green's function G is the solution of the equation LG = δ, 

where δ is Dirac's delta function; 

 the solution of the initial-value problem Ly = f is 

the convolution (G * f), where G is the Green's function. 

 

6.2 CONCEPT OF GREEN FUNCTION 
 

Our goal is to solve the nonhomogeneous differential equation 

    L[u] = f, 

where L is a differential operator. The solution is formally given by 

u = L
−1

[f]. 

The inverse of a differential operator is an integral operator, which we 

seek to write in the form 

 

 

The function G(x, ξ) is referred to as the kernel of the integral operator 

and is called the Green‟s function. 

6.3 THE METHOD OF VARIATION OF 

PARAMETERS 
 

We are interested in solving non-homogeneous second order linear 

differential equations of the form 

 

a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = f(x).    (6.1) 

The general solution of this non-homogeneous second order linear 

differential equation is found as a sum of the general solution of the 

homogeneous equation, 
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a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0,    (6.2) 

 

and a particular solution of the nonhomogeneous equation. 

 

 However, a more methodical method, which is first seen in a first course 

in differential equations, is the Method of Variation of Parameters. We 

will review this method in this section and extend it to the solution of 

boundary value problems. 

 

While it is sufficient to derive the method for the general differential 

equation above, we will instead consider solving equations that are in 

SturmLiouville, or self-adjoint, form. Therefore, we will apply the 

Method of Variation of Parameters to the equation 

 

 

Note that f(x) in this equation is not the same function as in the general 

equation posed at the beginning of this section. 

We begin by assuming that we have determined two linearly independent 

solutions of the homogeneous equation. The general solution is then 

given by 

 

 

In order 

to determine a particular solution of the nonhomogeneous equation, we 

vary the parameters c1 and c2 in the solution of the homogeneous 

problem by making them functions of the independent variable. Thus, we 

seek a particular solution of the nonhomogeneous equation in the form 

 

 

 

In order for this to be a solution, we need to show that it satisfies the 

differential equation. We first compute the derivatives of yp(x). The first 
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derivative is 

  
 (x) = c1(x)   

  (x) + c2(x)   
  (x) +   

  (x)y1(x) +   
  (x)y2(x). 

 

Without loss of generality, we will set the sum of the last two terms to 

zero. Then, we have 

  
  (x)y1(x) +   

  (x)y2(x) = 0.      (6.6) 

 

Now, we take the second derivative of the remaining terms to obtain 

 

  
    (x) = c1(x)   

    (x) + c2(x)   
    (x) +   

  (x)   
  (x) +   

  (x)   
  (x). 

 

Expanding the derivative term in Equation (6.3), 

 

p(x)   
   (x) + p′(x)   

  (x) + q(x)yp(x) = f(x), 

 

and inserting the expressions for yp,   
  (x), and   

  (x), we have 

 

Since y1(x) and y2(x) are both solutions of the homogeneous equation. 

The first two bracketed expressions vanish. Dividing by p(x), we have 

that 

Our goal is to determine c1(x) and c2(x). In this analysis, we have found 

that the derivatives of these functions satisfy a linear system of equations 

(in the ci‟s) 
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This system is easily solved to give 

 

 

 

 

We note that the denominator in these expressions involves the 

Wronskian of the solutions to the homogeneous problem. Recall that 

 

 

 

Furthermore, we can show that the denominator, p(x)W(x), is constant. 

Differentiating this expression and using the homogeneous form of the 

differential equation proves this assertion 

 

 

 

 

 

 

where x0 and x1 are arbitrary constants to be determined later. 

 

Therefore, the particular solution of (6.3) can be written as 

As a further note, we usually do not rewrite our initial value problems in 

self-adjoint form. Recall that for an equation of the form 

 

we obtained the self-adjoint form by multiplying the equation by 
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This gives the standard form 

 

(p(x)y′(x))′ + q(x)y(x) = f(x), 

 

 

 

 

With this in mind, Equation (6.13) becomes 

 

 

Example. Consider the nonhomogeneous differential equation 

 

   y′′ − y′ − 6y = 20e−2x. 

We seek a particular solution to this equation. First, we note two linearly 

independent solutions of this equation are 

 

y1(x) = e
3x

, y2(x) = e
−2x

. 

 

So, the particular solution takes the form 

yp(x) = c1(x)e
3x

 + c2(x)e
−2x

. 

 

We just need to determine the ci‟s. Since this problem is not in self-

adjoint form, we will use 

 

 

 

 

as seen above. Then the linear system we have to solve is 
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Multiplying the first equation by 2 and adding the equations yields 

 

 

 

 

 

 

Inserting this back into the first equation in the system, we have 

 

 

 

 

 

These equations are easily integrated to give 

 

 

 

Therefore, the particular solution has been found as 

 

 

 

 

 

Noting that the first term can be absorbed into the solution of the 

homogeneous problem. So, the particular solution can simply be written 

as 

    yp(x) = −4xe
−2x

. 

This is the answer you would have found had you used the Modified 

Method of Undetermined Coefficients. 

Check your Progress-1 

1. Define Green Function 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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2. Give generalized equation for Linear System for Variation of 

Parameters 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

 

6.4 INITIAL AND BOUNDARY VALUE 

GREEN’S FUNCTIONS 
 

We begin with the particular solution (6.13) of our nonhomogeneous 

differential equation (6.3). This can be combined with the general 

solution of the homogeneous problem to give the general solution of the 

nonhomogeneous differential equation: 

 

As seen in the last section, an appropriate choice of x0 and x1 could be 

found so that we need not explicitly write out the solution to the 

homogeneous problem, c1y1(x)+ c2y2(x). However, setting up the 

solution in this form will allow us to use x0 and x1 to determine particular 

solutions which satisfies certain homogeneous conditions. We will now 

consider initial value and boundary value problems. Each type of 

problem will lead to a solution of the form 

 

 

where the function G(x, ξ) will be identified as the Green‟s function and 

the integration limits will be found on the integral. Having identified the 

Green‟s function, we will look at other methods in the last section for 

determining the Green‟s function. 

 

6.4.1 Initial Value Green’s Function 

We begin by considering the solution of the initial value problem 
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Of course, we could have studied the original form of our differential 

equation without writing it in self-adjoint form. However, this form is 

useful when studying boundary value problems. We will return to this 

point later. 

We first note that we can solve this initial value problem by solving two 

separate initial value problems. We assume that the solution of the 

homogeneous problem satisfies the original initial conditions: 

 

We then assume that the particular solution satisfies the problem 

 

 

 

 

Since the differential equation is linear, then we know that y(x) = yh(x)+ 

yp(x) is a solution of the nonhomogeneous equation. However, this 

solution satisfies the initial conditions: 

 

 

 

 

Therefore, we need only focus on solving for the particular solution that 

satisfies homogeneous initial conditions. Recall Equation (6.13) from the 

last section, 
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We now seek values for x0 and x1 which satisfies the homogeneous 

initial conditions, yp (0) = 0 and   
 (0) = 0. 

First, we consider yp (0) = 0. We have 

 

Here, y1(x) and y2(x) are taken to be any solutions of the homogeneous 

differential equation. Let‟s assume that y1(0) = 0 and y2 ≠ (0) = 0. Then 

we have 

 

We can force yp (0) = 0 if we set x1 = 0. 

Now, we consider   
 (0) = 0. First we differentiate the solution and find 

that 

 

since the contributions from differentiating the integrals will cancel. 

Evaluating this result at x = 0, we have 

 

 

Assuming that   
 (0) ≠ 0, we can set x0 = 0. 

Thus, we have found that 

 

This result is in the correct form and we can identify the temporal,or 

initial value, Green‟s function. So, the particular solution is given as 
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where the initial value Green‟s function is defined as 

 

 

 

We summarize 

 

 

 

 

 

 

 

 

Example:  Solve the forced oscillator problem 

x′′ + x = 2 cost, x (0) = 4, x′(0) = 0. 

Solution: We first solve the homogeneous problem with 

nonhomogeneous initial conditions: 

 

  
  + xh = 0,  xh(0) = 4,    

 (0) = 0. 

 

The solution is easily seen to be xh(t) = 4 cos t. 

Next, we construct the Green‟s function. We need two linearly 

independent solutions, y1(x), y2(x), to the homogeneous differential 

equation satisfying y1(0) = 0 and   
  (0) = 0. So, we pick y1 (t) = sint and 

y2(t) = cost. The Wronskian is found as 

 

W(t) = y1(t)   
  (t) −   

  (t)y2(t) = − sin
2
 t − cos

2
 t = −1. 

Since p(t) = 1 in this problem, we have 

 

 

 

 



Notes 

101 

Note that the Green‟s function depends on t − τ. While this is useful in 

some contexts, we will use the expanded form. 

We can now determine the particular solution of the non-homogeneous 

differential equation. We have 

 

 

 

 

 

Therefore, the particular solution is x(t) = 4 cost+t sin t. As noted, we 

usually are not given the differential equation in self-adjoint form. 

Generally, it takes the form 

 

  a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = g(x).    (6.33) 

 

The driving term becomes 

 

 

 

Inserting this into the Green‟s function form of the particular solution, 

we obtain the following: 
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6.4.2  Boundary Value Green’s Function 

We now turn to boundary value problems. We will focus on the problem 

 

However, the general theory works for other forms of homogeneous 

boundary conditions. Once again, we seek x0 and x1 in the form 

 

so that the solution to the boundary value problem can be written as a 

single integral involving a Green‟s function. Here we absorb yh(x) into 

the integrals with an appropriate choice of lower limits on the integrals. 

We first pick solutions of the homogeneous differential equation such 

that y1(a) = 0, y2(b) = 0 and y1(b) ≠ 0, y2(a) ≠ 0. So, we have 

 

This expression is zero if x1 = a. 

At x = b we find that 

 

This vanishes for x0 = b. 

So, we have found that 
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We are seeking a Green‟s function so that the solution can be written as 

one integral. We can move the functions of x under the integral. Also, 

since a < x < b, we can flip the limits in the second integral. This gives 

 

This result can be written in a compact form: 

 

 

 

 

 

 

 

 

The Green‟s function satisfies several properties, which we will explore 

further in the next section. For example, the Green‟s function satisfies 

the boundary conditions at x = a and x = b. Thus, 

 

 

 

 

 

 

Also, the Green‟s function is symmetric in its arguments. Interchanging 

the arguments gives 

 

 

But a careful look at the original form shows that 

 

    G(x, ξ) = G(ξ, x). 
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We will make use of these properties in the next section to quickly 

determine the Green‟s functions for other boundary value problems. 

Example: Solve the boundary value problem y′′ = x2, y(0) = 0 = y(1) 

using the boundary value Green‟s function. 

We first solve the homogeneous equation, y′′ = 0. After two integrations, 

we have y(x) = Ax + B, for A and B constants to be determined. 

We need one solution satisfying y1(0) = 0 Thus, 0 = y1(0) = B. So, we 

can pick y1(x) = x, since A is arbitrary. 

The other solution has to satisfy y2(1) = 0. So, 0 = y2(1) = A + B. This 

can be solved for B = −A. Again, A is arbitrary and we will choose A = 

−1. Thus, y2(x) = 1 − x. 

For this problem p(x) = 1. Thus, for y1(x) = x and y2(x) = 1 − x, 

 

  p(x)W(x) = y1(x)  
  (x) −   

  (x)y2(x) = x(−1) − 1(1 − x) = −1. 

 

Note that p(x)W(x) is a constant, as it should be. Now we construct the 

Green‟s function. We have 

 

 

 

 

Notice the symmetry between the two branches of the Green‟s function. 

Also, the Green‟s function satisfies homogeneous boundary conditions:       

G(0, ξ) = 0, from the lower branch, and G(1, ξ) = 0, from the upper 

branch. 

Finally, we insert the Green‟s function into the integral form of the 

solution: 

 

 

 

 

 

 

 

 



Notes 

105 

Check your Progress-2 

1. State Solution of  Initial Value Green‟s Function 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain Boundary Value Green‟s Function 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

6.5 LET US SUM UP 
 

We understood the concept of Green function. We also comprehended 

important solution of Green Function using Initial Value and Boundary 

conditions. 

6.6 KEYWORDS 
 

1.  In functional analysis, a linear operator A on a Hilbert space is 

called self-adjoint if it is equal to its own adjoint A∗ and that the 

domain of A is the same as that of A∗. 

2. Initial condition. : any of a set of starting-point values belonging to 

or imposed upon the variables in an equation that has one or more 

arbitrary constants. 

3. Arbitrary means "undetermined; not assigned a specific value. 

6.7 QUESTIONS FOR REVIEW 
 

1. Use the Method of Variation of Parameters to determine the general 

solution for the following problems. 

a. y′′ + y = tan x. 

b. y′′ − 4y′ + 4y = 6xe
2x

. 
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2. Find the solution of each initial value problem using the appropriate 

initial value Green‟s function. 

a. y′′ − 3y′ + 2y = 20e
−2x

,   y(0) = 0,  y′(0) = 6. 

b. y′′ + y = 2 sin 3x,    y(0) = 5,  y′(0) = 0. 

3. Solve the boundary value problem using the Green‟s function. 

y′′ = sin x,   y′(0) = 0,  y(π) = 0. 

6.8 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

6.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation  – 6.2 

2. Provide equations– 6.3 [Refer equation – 6.9] 

3. Provide explanation– 6.4.1[Refer equation – 6.30] 

4. Provide explanation– 6.4.2 
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UNIT-7 GREEN FUNCTION II 
 

STRUCTURE 

7.0 Objectives 

7.1 Introduction 

7.2 Properties of Green‟s Functions 

7.3 The Dirac Delta Function 

7.4 Green‟s Function Differential Equation 

7.5 Let us sum up 

7.6 Keywords 

7.7 Questions for Review 

7.8 Suggested Reading and References 

7.9 Answers to Check your Progress 

7.0 OBJECTIVES 
 

Understand different properties of Green‟s Function and its application 

Understand the concept The Dirac Delta Function 

Enumerate Green‟s Function Differential Equation 

7.1 INTRODUCTION 
 

We have noted some properties of Green‟s functions in the last section. 

In this section we will elaborate on some of these properties as a tool for 

quickly constructing Green‟s functions for boundary value problems. 

 

7.2 PROPERTIES OF GREEN’S 

FUNCTIONS 
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We now show how a knowledge of these properties allows one to 

quickly construct a Green‟s function. 

 

Example. Construct the Green‟s function for the problem 

 

y′′ + ω
2
y = f(x),    0 < x < 1, 

  y(0) = 0 = y(1), 

with ω ≠ 0. 
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I. Find solutions to the homogeneous equation. 

A general solution to the homogeneous equation is given as 

   yh(x) = c1 sin ωx + c2 cosωx. 

Thus, for x ≠ ξ, 

    G(x, ξ) = c1(ξ) sin ωx + c2(ξ) cosωx. 

 

II. Boundary Conditions. 

 

First, we have G(0, ξ) = 0 for 0 ≤ x ≤ ξ. So, 

 

    G(0, ξ) = c2(ξ) cos ωx = 0. 

So, 

   G(x, ξ) = c1(ξ) sin ωx, 0 ≤ x ≤ ξ. 

 

Second, we have G(1, ξ) = 0 for ξ ≤ x ≤ 1. So, 

 

   G(1, ξ) = c1(ξ) sin ω + c2(ξ) cosω. = 0 

 

A solution can be chosen with 

   c2(ξ) = −c1(ξ) tan ω. 

 

This gives 

  G(x, ξ) = c1(ξ) sin ωx − c1(ξ) tan ω cosωx. 

 

This can be simplified by factoring out the c1(ξ) and placing the 

remaining terms over a common denominator. The result is 

 

 

 

 

 

 

Since the coefficient is arbitrary at this point, as can write the result as 

   G(x, ξ) = d1(ξ) sin ω(1 − x), ξ ≤ x ≤ 1. 
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We note that we could have started with y2(x) = sinω(1−x) as one of our 

linearly independent solutions of the homogeneous problem in 

anticipation that y2(x) satisfies the second boundary condition. 

 

III. Symmetry or Reciprocity 

 

We now impose that G(x, ξ) = G(ξ, x). To this point we have that 

 

 

 

 

We can make the branches symmetric by picking the right forms for c1(ξ) 

and d1(ξ). We choose c1(ξ) = C sinω(1 − ξ) and d1(ξ) = C sin ωξ. Then, 

 

 

 

 

Now the Green‟s function is symmetric and we still have to determine 

the constant C. We note that we could have gotten to this point using the 

Method of Variation of Parameters result where C = 1/pW . 

 

IV. Continuity of G(x, ξ) 

 

We note that we already have continuity by virtue of the symmetry 

imposed in the last step. 

 

V. Jump Discontinuity in 
   

  
G(x, ξ). 

We still need to determine C. We can do this using the jump 

discontinuity of the derivative 

 

 

 

For our problem p(x) = 1. So, inserting our Green‟s function, we have 
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Therefore, 

 

 

 

Finally, we have our Green‟s function: 

 

It is instructive to compare this result to the Variation of Parameters 

result. We have the functions y1(x) = sin ωx and y2(x) = sin ω(1 − x) as 

the solutions of the homogeneous equation satisfying y1(0) = 0 and y2(1) 

= 0. We need to compute pW: 

 

Inserting this result into the Variation of Parameters result for the 

Green‟s function leads to the same Green‟s function as above. 

 

7.3 THE DIRAC DELTA FUNCTION 
 

We will develop a more general theory of Green‟s functions for ordinary 

differential equations which encompasses some of the listed properties. 

The Green‟s function satisfies a homogeneous differential equation for x 

≠ ξ, 
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When x = ξ, we saw that the derivative has a jump in its value. This is 

similar to the step, or Heaviside, function, 

 

 

 

 

In the case of the step function, the derivative is zero everywhere except 

at the jump. At the jump, there is an infinite slope, though technically, 

we have learned that there is no derivative at this point. We will try to 

remedy this by introducing the Dirac delta function, 

 

 

 

We will then show that the Green‟s function satisfies the differential 

equation 

 

The Dirac delta function, δ(x), is one example of what is known as a 

generalized function, or a distribution. Dirac had introduced this function 

in the 1930‟s in his study of quantum mechanics as a useful tool. It was 

later studied in a general theory of distributions and found to be more 

than a simple tool used by physicists. The Dirac delta function, as any 

distribution, only makes sense under an integral. 

Before defining the Dirac delta function and introducing some of its 

properties, we will look at some representations that lead to the 

definition. We will consider the limits of two sequences of functions. 

First we define the sequence of functions 
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This is a sequence of functions as shown in Figure 7.1. As n → ∞, we 

find the limit is zero for x ≠ 0 and is infinite for x = 0. However, the area 

under each member of the sequences is one since each box has height n/2 

and width n/2. 

Thus, the limiting function is zero at most points but has area one. 

 

 

 

 

 

 

 

 

 

 

 

 

The limit is not really a function. It is a generalized function. It is called 

the Dirac delta function, which is defined by 

1. δ(x) = 0 for x ≠ 0. 

2. ∫  ( )   
 

  
 = 1. 

Another example is the sequence defined by 

 

 

 

We can graph this function. We first rewrite this function as 

 

 

 

Now it is easy to see that as x → 0, Dn(x) → 2n. For large x, The 

function tends to zero. A plot of this function is in Figure 7.2. For large n 

the peak grows and the values of Dn(x) for x ≠ 0 tend to zero as show in 

Figure 7.3. 

We note that in the limit n → ∞, Dn(x) = 0 for x 6= 0 and it is infinite 

at x = 0. However, using complex analysis one can show that the area is 
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Thus, the area is constant for each n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two main properties that define a Dirac delta function. First 

one has that the area under the delta function is one 

 

 

 

Integration over more general intervals gives 
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Another common property is what is sometimes called the sifting 

property. Namely, integrating the product of a function and the delta 

function “sifts” out a specific value of the function. It is given by 

 

 

 

 

This can be seen by noting that the delta function is zero everywhere 

except at x = a. Therefore, the integrand is zero everywhere and the only 

contribution from f(x) will be from x = a. So, we can replace f(x) with 

f(a) under the integral. Since f(a) is a constant, we have that 

 

Another property results from using a scaled argument, ax. In this case 

we show that 

 

 

 

As usual, this only has meaning under an integral sign. So, we place 

δ(ax) inside an integral and make a substitution y = ax: 

 

If a > 0 then 
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However, if a < 0 then 

 

 

 

 

The overall difference in a multiplicative minus sign can be absorbed 

into one expression by changing the factor 1/a to 1/|a|. Thus, 

 

 

Example:  Evaluate  

 

 

Solution : This is not a simple δ(x−a). So, we need to find the zeros of 

f(x) = 3x−2. There is only one, x = 2 /3. Also, |f ′(x)| = 3. Therefore, we 

have 

 

More generally, one can show that when f(xj) = 0 and f ′(xj) ≠ 0 for xj, 

j = 1,2, . . ., n, (i.e.; when one has n simple zeros), then  

 

 

 

7.4 GREEN’S FUNCTION DIFFERENTIAL 

EQUATION 
 

As noted, the Green‟s function satisfies the differential equation 
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and satisfies homogeneous conditions. We have used the Green‟s 

function to solve the non-homogeneous equation 

 

These equations can be written in the more compact forms 

 

 

 

Multiplying the first equation by G(x, ξ), the second equation by y(x), 

and then subtracting, we have 

 

 

 

Now, integrate both sides from x = a to x = b. The left side becomes 

 

and, using Green‟s Identity, the right side is  

 

 

Combining these results and rearranging, we obtain 

 

Next, one uses the boundary conditions in the problem in order to 

determine which conditions the Green‟s function needs to satisfy. For 

example, if we have the boundary condition y(a) = 0 and y(b) = 0, then 

the boundary terms yield 
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The right hand side will only vanish if G(x, ξ) also satisfies these 

homogeneous boundary conditions. This then leaves us with the solution 

 

 

 

We should rewrite this as a function of x. So, we replace ξ with x and x 

with ξ. This gives 

 

 

 

However, this is not yet in the desirable form. The arguments of the 

Green‟s function are reversed. But, G(x, ξ) is symmetric in its arguments. 

So, we can simply switch the arguments getting the desired result. We 

can now see that the theory works for other boundary conditions. If 

we had y′(a) = 0, then the y(a) 
   

  
(a, ξ) term in the boundary terms could 

be made to vanish if we set 
   

  
(a, ξ) = 0. 

 

We can even adapt this theory to non- homogeneous boundary 

conditions. 

We first rewrite Equation (7.15) 

 

 Let‟s consider the boundary conditions y(a) = α and y′(b) = beta. We 

also assume that G(x, ξ) satisfies homogeneous boundary conditions, 
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in both x and ξ since the Green‟s function is symmetric in its variables. 

Then, we need only focus on the boundary terms to examine the effect on 

the solution. We have 

 

Therefore, we have the solution  

 

This solution satisfies the non-homogeneous boundary conditions. Let‟s 

see how it works. 

 

Example: Modify Example 8.4 to solve the boundary value problem y′′ 

=x
2
, y(0) = 1, y(1) = 2 using the boundary value Green‟s function that we 

found: 

 

 

We insert the Green‟s function into the solution and use the given 

conditions to obtain 

 

 

Of course, this problem can be solved more directly by direct integration. 

The general solution is 
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Inserting this solution into each boundary condition yields the same 

result. 

We have seen how the introduction of the Dirac delta function in the 

differential equation satisfied by the Green‟s function, Equation (7.12), 

can lead to the solution of boundary value problems. The Dirac delta 

function also aids in our interpretation of the Green‟s function. We note 

that the Green‟s function is a solution of an equation in which the non 

homogeneous function is δ(x − ξ). Note that if we multiply the delta 

function by f(ξ) and integrate we obtain 

 

 

 

We can view the delta function as a unit impulse at x = ξ which can be 

used to build f(x) as a sum of impulses of different strengths, f(ξ). Thus, 

the Green‟s function is the response to the impulse as governed by the 

differential equation and given boundary conditions. 

In particular, the delta function forced equation can be used to derive the 

jump condition. We begin with the equation in the form 

 

 

Now, integrate both sides from ξ − ǫ to ξ + ǫ and take the limit as ǫ → 0. 

Then, 

 

 

Since the q(x) term is continuous, the limit of that term vanishes. Using 

the Fundamental Theorem of Calculus, we then have 
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This is the jump condition that we have been using! 

Check your Progress-1 

1. State any two properties of Green Function 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2. Explain Direct Delta Function 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

3. Discuss Green‟s Function Differential Equation 

__________________________________________________________

__________________________________________________________

________________________________________ 

 

7.5 LET US SUM UP 
 

We have seen different properties of Green Function and its application. 

The Dirac delta function, as any distribution, only makes sense under an 

integral. We also explored Green‟s Function Differential Equation. 

7.6 KEYWORDS 
 

Differential Equation : an equation involving derivatives of a function 

or functions 

 Homogeneous   Equation: A polynomial is homogeneous if all its 

terms have the same degree.  
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Nonhomogeneous differential equations : are the same as homogeneous 

differential equations, except they can have terms involving only x (and 

constants) on the right side, as in this equation 

7.7 QUESTIONS FOR REVIEW 
 

1. Evaluate  

 

2. Evaluate  

 

7.8 SUGGESTED READINGS AND 

REFERENCES 

 

7. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

8. Linear Integral Equation: W.V. Lovitt (Dover). 

9. Integral Equations, Porter and  Stirling, Cambridge. 

10. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

11. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

12. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

7.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide  statement of properties  – 7.2 

2. Provide explanation– 7.3 

3. Provide explanation– 7.4 


